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ABSTRACT: In this paper, we consider the following third order nonlinear neutral delay difference 

equation 

                 2a n x n p n x n q n x n e n


       
 

 

Where        , , ,a n p n q n e n  are real sequences. We use the Krasnoselskii’s fixes point 

theorem to establish the existence of nonoscillatory solutions. 
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1. INTRODUCTION: 

We consider the nonlinear neutral delay difference equations of the form 

 
                 2a n x n p n x n q n x n e n


       

 
. (1.1) 

where  is a quotient of odd positive integers,   is a forward difference operator defined by 

     1 , ,x n x n x n      are positive integers and  
0 0 0 0, 1, ,nn N n n n    is a nonnegative 

integer. 

 We set         z n x n p n x n  . The oscillatory and nonoscillatory behavior of solutions of 

difference equations have been considered in    1 9 and conditions for the existence of nonoscillatory 

solutions using either Schauder fixed point theorem or Banach contraction principle are obtained. The 

aim of this paper is to obtain sufficient conditions for the existence of nonoscillatory solution of equation 

(1.1) using Krasnoselskii’s fixed point theorem. 

 Let  max ,   . By a solution of equation (1.1) we mean a real sequence  x n is defined for 

all 0n n    satisfies (1.1) for all 0n n . A nontrivial solution  x n  is said to be oscillatory if it is 

neither eventually positive nor eventually negative; otherwise, it is nonoscillatory. Equation (1.1) is said 

to be oscillatory if all its solutions are oscillatory. 

2. EXISTENCE OF NONOSCILLATORY SOLUTIONS 

In this section we establish sufficient condition for the existence of bounded nonoscillatory 

solution of equation (1.1). 

Lemma 2.1 (Krasnoselskii’s Fixed Point Theorem): Let X  be a Banach space, let be a bounded 

closed convex subset of X and let 1 2,S S be maps of   into X such that 1 2S x S y  for every pair 

,x y . If 1S  is a contraction and 2S is completely continuous, then the equation 1 2S x S y x  has a 

solution in . 

Theorem 2.2Assume that  11 0c p n     and that 

 

 
0n n

q n




  , (2.1) 
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0n n

e n




  , (2.2) 

and 

 

 
0

1

n n a n





  . (2.3) 

Then equation (1.1) has a bounded nonoscillatory solution. 

Proof.By (2.1) – (2.3), we choose 0n n  sufficiently such that 

 
     

1

1

1 1

1 1
1 .

3l n t l s t

q s M e s c
a t

  

  

 
   

 
 

 
 

where 
 

  
1

1
2 1 4

3 3

max
c

x

M x s 


 

 . Let 
0n

  be the set of all real sequences with the norm 

 
0

sup
n n

x x n


   . Then 
0n

 is a Banach space. We define a closed, bounded and convex subset   of 

0n

 as follows. 

      
0 1 0

2 4
: 1 , .

3 3
nx x n c x n n n 

        
 

  

Define two maps 1S and 
02 : nS    as follows: 

 
    

 

   
       

 

1 1

1

1 0 1

1

1
2

2 0 1

1 , ,

, .

1
, ,

, .

n

n

l n t l s tn

n

c p n x n n n
S x

S x n n n

q s x s e s n n
S x a t

S x n n n







  

  

   
 

 


 

       


 

 
 

Case 1.(i) We shall show that for any    1 2, ,
n n

x y S x S y   . In fact for every ,x y  and 0n n , 

we get 

        
 

       

 
   

1

1

1 2 1

1

1 1 1

1
1 1

1
1

4 1
1

3

14 4
1 .

3 3 3

n n
l n t l s t

l n t l s t

S x S y c p n x n q s y s e s
a t

c c q s M e s
a t

c
c c






 
  

  

  

  

 
       

 

 
     

 
 


    

 

   

Furthermore we have, 
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1

1

1 2 1

1

1 1

11
1

1
1

1
1

2 11
1 .

3 3

n n
l n t l s t

l n t l s t

S x S y c p n x n q s y s e s
a t

c q s M e s
a t

cc
c






 
  

  

  

  

 
       

 

 
    

 
 


   

 

   

Hence 

 
   1

1 2 0

2 1 4
,

3 3n n

c
S x S y n n


    . 

Thus we have proved that    1 2n n
S x S y   for any ,x y . 

(ii) 
0 1n n n  . For any x  we know that    

1
1 1n n

S x S x and    
1

2 2n n
S x S x . 

 
   

1 1

1

1 2

2 1 4

3 3n n

c
S x S x


   . 

Considering the two cases, for any x , we have 

 
   1

1 2

2 1 4

3 3n n

c
S x S x


   .  

Case 2. We shall show that 1S  is a contraction mapping on  . For ,x y and 0n n , we have 

           1 2 1n n
S x S y p n x n y n c x y        . 

Since 10 1c   , we conclude that 1S  is a contraction mapping on  . 

Case 3.next we shall show that 2S  is uniformly Cauchy. First we shall show that 2S continuous. Let  ix  

be a sequence in   such that 
   i

x x x n  as i  . Since   is closed x . Furthermore, for 

1n n  we have, 

    
 

         
1

1

2 2

1i i

nn
l n t l s t

S x S x q s x n x n
a t


  

  

  

 
   

 
 

  . 

Since         0
i

x n x n
     as i  by applying the Lebeque dominated convergence theorem, 

we conclude that 

    2 2lim 0
i

nn n
S x S x


  . 

This means that 2S  is continuous. Finally we prove that 2S  is uniformly Cauchy. By (2.1) – (2.3), for 

any 0  , choose 1n n  large enough so that 

 
   

1

1

1

2l n t l s t

q s M e s
a t

   

  

 
  

 
 

  . 

Then for 2 1,x n n N   . 
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Thus 
2S is uniformly Cauchy. 

On summarizing the above cases we can conclude from the Kronoseselskii’s fixed point theorem 

that there exists a fixed point x  on  such that    1 2n n
S x S x x  , where ( )x x n satisfies 

        
 

       

      
 

       

1

1 2 1

1

1

1
1

1
1 .

n n
l n t l s t

l n t l s t

S x S x c p n x n q s x s e s
a t

x n c p n x n q s x s e s
a t







 

 

  

  

  

  

 
       

 

 
      

 

 

 

 

From this,  x n  is a positive sequence. Differentiating three times the above expression, we get 

                 2a n x n p n x n q n x n e n


       
 

. 

Hence this fixed point  x n is a positive solution of the equation (1.1). This completes the proof of 

Theorem 2.2. 

Theorem 2.3Assume that 2( ) 1p n c      and that (2.1) to (2.3) Then equation (1.1) has a bounded 

nonoscillatory solution. 

Proof:  By (2.1) – (2.3), we choose a 1 0n n  sufficiently such that 

 
   

1

1

2 2

2

1 1 1
(1 ).

2l n t l s t

q s M e s c
c a t





  

   

 
     

 
 

    

where
 

  
2

2

2
1

2
2

max
c

x c

M x s 


  

 . Let 
0n

  be the set of all real sequences with the norm

0

sup ( )
n n

x x n


   . Then
0n

 is a Banach space. We define a closed, bounded and convex subset   of 

0n

  as follows. 

      
0 2 2 0

1
: 1 2 , .

2
nx x n c x n c n n 

          
 

  

Define two maps 
1S  and 

02 : nS    as follows:  
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(i) We shall show that for any    1 2, ,
n n

x y S x S y   . In fact for every ,x y and 
1n n , we get 
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Furthermore we have, 
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Hence 

 
   2

1 2 2

1
2

2 n n

c
S x S y c


     . 

Thus we have proved that    1 2n n
S x S y   for any ,x y . We shall show that 1S  is a contraction 

mapping on  . In fact ,x y  and 1n n we have 

       1 2

2

1 1

( )n n
S x S y x n y n x y

p n c
          . 

Since 
2

1
0 1

c
    that 1S  is a contraction mapping on  . Proceeding similarly as in the proof of 

Theorem 2.2 we obtain 2S  is uniformly Cauchy. By Lemma 2.1, there is an *x   such that 

* * *

1 2S x S x x  . It is easy to see that   * *x x n is a nonoscillatory solution of the equation (1.1). This 

completes the proof of Theorem 2.3. 

Theorem 2.4Assume that 30 ( ) 1p n c    and that (2.1) to (2.3) Then equation (1.1) has a bounded 

nonoscillatory solution. 

Proof: By (2.1) – (2.3), we choose a 1 0n n sufficiently such that  
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Furthermore we have,  
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Hence  

     3 1 22 1 4.
n n

c S x S y    for 0n n . 

Thus we have proved that    1 2n n
S x S y   for any ,x y . Proceeding similarly as in the proof of 

Theorem 2.2 we obtain the mapping 1S  is a contraction mapping on   and the mapping 2S  is uniformly 

Cauchy.By Lemma 2.1, there is an *x   such that * * *

1 2S x S x x  . It is easy to see that   * *x x n is 

a nonoscillatory solution of the equation (1.1). This completes the proof of Theorem 2.4. 

Theorem 2.5.Assume that 41 ( )c p n    and that (2.1) to (2.3) Then equation (1.1) has a bounded 

nonoscillatory solution. 

Proof: By (2.1) – (2.3), we choose a 1 0n n sufficiently such that  
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Hence  

     4 1 2 42 1 4 .
n n

c S x S y c    for 0n n . 

Thus we have proved that    1 2n n
S x S y   for any ,x y . Proceeding similarly as in the proof of 

Theorem 2.2 we obtain the mapping 1S  is a contraction mapping on   and the mapping 2S  is uniformly 

Cauchy. By Lemma 2.1, there is an *x   such that * * *

1 2S x S x x  . It is easy to see that  * *x x is a 

nonoscillatory solution of the equation (1.1). This completes the proof of Theorem 2.5. 
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