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ABSTRACT: In this paper, we consider the following third order nonlinear neutral delay difference
equation

A(a(n)(Az(x(n)+ p(n)x(g(n))))7j+q(n)x7(T(n)):e(n)

Where a(n), p(n),q(n),e(n) are real sequences. We use the Krasnoselskii’s fixes point

theorem to establish the existence of nonoscillatory solutions.
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1. INTRODUCTION:
We consider the nonlinear neutral delay difference equations of the form

A(a(m) (a7 (x(n) - px(a())) J+amx (r(m)=e(n). eh
where yis a quotient of odd positive integers, A is a forward difference operator defined by
Ax(n)=x(n+1)-x(n), s, rare positive integers and neN, ={n;,n,+1---},nis a nonnegative
integer.

We setz(n)=x(n)+ p(n)x(5(n)). The oscillatory and nonoscillatory behavior of solutions of

difference equations have been considered in [1]-[9]and conditions for the existence of nonoscillatory

solutions using either Schauder fixed point theorem or Banach contraction principle are obtained. The
aim of this paper is to obtain sufficient conditions for the existence of nonoscillatory solution of equation
(1.1) using Krasnoselskii’s fixed point theorem.

Letd= max{5, r}. By a solution of equation (1.1) we mean a real sequence x(n) is defined for

all n>n, -6 satisfies (1.1) for alln>n,. A nontrivial solution x(n) is said to be oscillatory if it is

neither eventually positive nor eventually negative; otherwise, it is nonoscillatory. Equation (1.1) is said
to be oscillatory if all its solutions are oscillatory.
2. EXISTENCE OF NONOSCILLATORY SOLUTIONS

In this section we establish sufficient condition for the existence of bounded nonoscillatory
solution of equation (1.1).
Lemma 2.1 (Krasnoselskii’s Fixed Point Theorem): Let X be a Banach space, letQbe a bounded
closed convex subset of X and let S;,S,be maps of Q into X such thatS,x+S,y e Qfor every pair

X, yeQ. IfS, is a contraction and S, is completely continuous, then the equation S x+S,y =xhas a
solution in Q..
Theorem 2.2Assume that —1<c, < p(n)<0 and that

> [a(n)|<e, 1)
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i‘e(n)‘<oo, (2.2)

n=ny
and

o0

1
2l ()

Then equation (1.1) has a bounded nonoscillatory solution.
Proof.By (2.1) — (2.3), we choose n > n, sufficiently such that

>3l

I=n, t=I

<00, (2.3)

i\q ‘M1+‘e(s)0y<%(1+cl).

where M, = max ¥ (z(s))- Let ¢, be the set of all real sequences with the norm

L
Ul

|X| =sup|x(n)| <. Then ¢7 is a Banach space. We define a closed, bounded and convex subset Q of
¢ as follows.
Q={x={x(n)}err :Z(1+c)<x(n)< = nzn, .
Ny 3 1 3’ 0
Define two maps S,and S, : Q2 — /7 as follows:

(S, _{1+C1 p(n)x(8(n)), nxn,

(S,x)., nmy<n<n,.

Case 1.(i) We shall show that for any x,y € Q, (S,x) +(S,y), € Q. In fact for every x,y e Q andn>n,
we get

<slx>n+<szy>ns1+c1—p(n)x(é(n))éi[ﬁi(q@)w(r(s))—e(s))}y

Furthermore we have,
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Hence

@ <(Sx) +(S,y), s%, n>n,.

Thus we have proved that (S,x) +(S,y) €Q forany x,yeQ.

(i) ny <n<n,. Forany x € Q we know that (S,x) =(S,x), and (S,x) =(S,x), .

2(1+c 4
%g(slx)m +(5x), <5

Considering the two cases, for any x e Q, we have
2(1+c
20+6) _ (5.0 +(5,0) <2
3 " "3
Case 2. We shall show that S, is a contraction mapping on Q. For x,y e Qand n>n,, we have

(%), +(S:y),| < =p(m)|x(8(n)) - y(5(n)) <. x-y].
Since 0 < —¢c, <1, we conclude that S, is a contraction mapping on Q.

Case 3.next we shall show that S, is uniformly Cauchy. First we shall show that S, continuous. Let {xi}

be a sequence in Q such that x(i)—>x:x(n)as I >o0. Since Q is closedx Q. Furthermore, for
n=n, we have,

(50,520, <5 ot St <n>>]i-

Since ‘x() ( ) xy(r ‘ 0 as i — oo by applying the Lebeque dominated convergence theorem,

al(t

we conclude that

imf(s2x"), ~(520). -

This means that S, is continuous. Finally we prove that S, is uniformly Cauchy. By (2.1) — (2.3), for
any ¢ >0, choose n>n, large enough so that

ZZ[ ‘Ml+‘e(s)gy<%.

I=n t=I
Then for XGQ,n2>nl>N.
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Thus S, is uniformly Cauchy.
On summarizing the above cases we can conclude from the Kronoseselskii’s fixed point theorem
that there exists a fixed point x on Qsuch that(Sx) +(S,x) =x, where x = x(n) satisfies

<s1x>n+<szx>n=1+c1—p(n)x(é(n))&i[ﬁi(q(s)xy(r(s))—e(s))]y

x(n)=1+c,— p(n)x(s(n))

_J’_
[Ms
s

—
m‘

—_
=

A
\MS

—_—
o
—_

w
A —

=
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—_—

'ﬂ
—_

w
N—
N—

|

@
—

w
N
N—

= |

From this, x(n) is a positive sequence. Differentiating three times the above expression, we get

A(a(n)(Az(x(n)+ p(n)x(é‘(n))))y)+q(n)x7(T(n)):e(n).

Hence this fixed point x(n)is a positive solution of the equation (1.1). This completes the proof of
Theorem 2.2.

Theorem 2.3Assume that —oo < p(n) =c, <—1 and that (2.1) to (2.3) Then equation (1.1) has a bounded
nonoscillatory solution.

Proof: By (2.1) —(2.3), we choose a n, > n, sufficiently such that

1l & & 1 |& o .
_= 1 " VN
cz.%;(am 2,1a(s) z+\e<s>@ <+
where M, = Ll aX ‘xy(r(s))‘. Let ¢, be the set of all real sequences with the norm
- xs20

|IX|| = sup|x(n)| < oo. Then 7 is a Banach space. We define a closed, bounded and convex subset Q of

¢~ as follows.

Mo

Qz{x:{x(n)} el :—%(1+c2)£ x(n)<-2c,,n> no}.

Define two maps S, and S, : Q2 — ¢ as follows:
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(S;x)., My<n<

(i) We shall show that for any x,y e, (S,x) +(S,y) €Q. Infact for every x,y e Qand n>n,, we get
(520, +(59), <001 E (o) 5 S LS (a(s)y (e(s))-e() |
" ) p(n) p(n) S5 a\a(t) &=

1

<o-riz-2 5 SISt el

C2I m+o t=l

c,+1
2

=-2¢C,.

Furthermore we have,

(5, +(S,y), =€, ~1-——x(n+8)+

p(n)

1t

(—c2—1)+C2+1:—C22+1.

Hence
~ (c, +1)

<(Sx), +(S,y). <—2c,.
Thus we have proved that (S,x) +(S,y), €Q forany x,y eQ. We shall show that S, is a contraction
mapping on Q. In fact x,y € Q and n>n, we have

‘(Slx)n ~(S,Y),

Since 0<—i <1 that S, is a contraction mapping on Q. Proceeding similarly as in the proof of
C2

Theorem 2.2 we obtain S, is uniformly Cauchy. By Lemma 2.1, there is an x eQ such that

1 1
<———IxX(n+8)-y(n+8) <——|x-y|.

SX +S,x =x". It is easy to see that X = {x(n)} is a nonoscillatory solution of the equation (1.1). This

completes the proof of Theorem 2.3.
Theorem 2.4Assume that 0< p(n)<c, <1 and that (2.1) to (2.3) Then equation (1.1) has a bounded

nonoscillatory solution.
Proof: By (2.1) —(2.3), we choose a n, > n,sufficiently such that
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wt ja(s)[M, +\e(s)\]y <l-c,.

1

a(t)

where M, = max
2(1-c;)<x<4

|

s=n

X’ (r(s))‘ . Let /7 be the set of all real sequences with the norm | x| =§gnp|x(n)| <o,

Then ¢ is a Banach space. We define a closed, bounded and convex subset © of /7 as follows.
Q={x={x(n)} ey :20-c;)<x(n)<4,n=ny}.
Define two maps S, and S, :Q2— /7 as follows:

(5x) _{3+c3 - p(Mx(s(n)), nzn,

(S$,x),, ny<n<n,.

Furthermore we have,

(5), +(S,), 23+¢,— px(5(m) -3 %i(ms)w(r(s))—e(s))]y

>3+¢,- pMx(5(n)-23

>3+C,—4c,—(1-¢,) =2(1-¢,).

Hence

2(1-c,)<(Sx), +(S,y) <4.for n>n,.

Thus we have proved that (Slx)n +(Szy)n e Q for any x,yeQ. Proceeding similarly as in the proof of
Theorem 2.2 we obtain the mapping S, is a contraction mapping on Q and the mapping S, is uniformly
Cauchy.By Lemma 2.1, there is an X" € Q suchthat S,x" +S,x" =x". It is easy to see that X" = {x* (n)} is

a nonoscillatory solution of the equation (1.1). This completes the proof of Theorem 2.4.

Theorem 2.5.Assume that 1<c, =< p(n) <o and that (2.1) to (2.3) Then equation (1.1) has a bounded
nonoscillatory solution.

Proof: By (2.1) —(2.3), we choose a n, > n,sufficiently such that
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1
z\q ‘M4+‘e(s)@y <c,-1.

XV(T(S))‘. Let ¢; be the set of all real sequences with the norm

P

S t=I

Where M, = max
2(cy—1)<x<4c,

||| =sup|x(n)| <co. Then ¢ is a Banach space. We define a closed, bounded and convex subset Q of

n>n,

¢ as follows.
Q={x={x(n)} e (7 :2(c,~) <x(n) <4c,, n=ny}.

Define two maps S, and S, :Q2— /7 ~as follows:

(S1x), = p(n)

(S%), = ) i(ﬁi(q(sw(T(S))—e(S))T1 n=n,

(i) We shall show that for any x,y e Q,(S,x) +(S,y), €Q. In fact for every x,y e @andn>n,, we get

—

S=

i
/—\
\<
N
—_
(ﬂ
—~
w
~
~
|
D
—_~
w
~—
~——
N—

1 <N
(S:x). +(S,y), <3c, +1—(—x (n+k) — Z Z[m

p(n) p(n) s 'S
(S)M, e \]

<3c, +1+(c, -1)=4c,.
Furthermore we have,

(5.X), +(S,Y), 230, +1-——x(n+k)-—— 3° i(%i(q(s)w(f(s))—e(s))}

p(n) p(n) s S

X[

<3c, +1+—ZZ[

4Int|

> 3c, +1—i)x(n+k) %ii(

p(n
>3c, -3-(c, -1)=2(c, -1).

Hence

2(c, —1)<(Sx)_ +(S,y), <4c,.for n=n,.

Thus we have proved that (Slx)n +(Szy)n e Q for any x,y e Q. Proceeding similarly as in the proof of
Theorem 2.2 we obtain the mapping S, is a contraction mapping on Q and the mapping S, is uniformly
Cauchy. By Lemma 2.1, there is an X" e Q such thatS,x" +S,x" = x". It is easy to see that X" = {x*} is a
nonoscillatory solution of the equation (1.1). This completes the proof of Theorem 2.5.
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